163 research outputs found

    Towards understanding source location privacy in wireless sensor networks through fake sources

    Get PDF
    Source location privacy is becoming an increasingly important property in wireless sensor network applications, such as asset monitoring. The original source location problem is to protect the location of a source in a wireless sensor network from a single distributed eavesdropper attack. Several techniques have been proposed to address the source location problem, where most of these apply some form of traffic analysis and engineering to provide enhanced privacy. One such technique, namely fake sources, has proved to be promising for providing source location privacy. Recent research has concentrated on investigating the efficiency of fake source approaches under various attacker models. In this paper, we (i) provide a novel formalisation of the source location privacy problem, (ii) prove the source location privacy problem to be NP-complete, and (iii) provide a heuristic that yields an optimal level of privacy under appropriate parameterisation. Crucially, the results presented show that fake sources can provide a high, sometimes optimal, level of privacy

    A dynamic fake source algorithm for source location privacy in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are commonly used in asset monitoring applications, where it is often desirable for the location of the asset being monitored to be kept private. The source location privacy (SLP) problem involves protecting the location of a WSN source node from an attacker who is attempting to locate it. Among the most promising approaches to the SLP problem is the use of fake sources, with much existing research demonstrating their efficacy. Despite the effectiveness of the approach, the most effective algorithms providing SLP require network and situational knowledge that makes their deployment impractical in many contexts. In this paper, we develop a novel dynamic fake sources-based algorithm for SLP. We show that the algorithm provides state-of-the-art levels of location privacy under practical operational assumptions

    Identifying attack surfaces in the evolving space industry using reference architectures

    Get PDF
    The space environment is currently undergoing a substantial change and many new entrants to the market are deploying devices, satellites and systems in space; this evolution has been termed as NewSpace. The change is complicated by technological developments such as deploying machine learning based autonomous space systems and the Internet of Space Things (IoST). In the IoST, space systems will rely on satellite-to-x communication and interactions with wider aspects of the ground segment to a greater degree than existing systems. Such developments will inevitably lead to a change in the cyber security threat landscape of space systems. Inevitably, there will be a greater number of attack vectors for adversaries to exploit, and previously infeasible threats can be realised, and thus require mitigation. In this paper, we present a reference architecture (RA) that can be used to abstractly model in situ applications of this new space landscape. The RA specifies high-level system components and their interactions. By instantiating the RA for two scenarios we demonstrate how to analyse the attack surface using attack trees

    Assessing the performance of phantom routing on source location privacy in wireless sensor networks

    Get PDF
    As wireless sensor networks (WSNs) have been applied across a spectrum of application domains, the problem of source location privacy (SLP) has emerged as a significant issue, particularly in safety-critical situations. In seminal work on SLP, phantom routing was proposed as an approach to addressing the issue. However, results presented in support of phantom routing have not included considerations for practical network configurations, omitting simulations and analyses with larger network sizes. This paper addresses this shortcoming by conducting an in-depth investigation of phantom routing under various network configurations. The results presented demonstrate that previous work in phantom routing does not generalise well to different network configurations. Specifically, under certain configurations, it is shown that the afforded SLP is reduced by a factor of up to 75

    A decision theoretic framework for selecting source location privacy aware routing protocols in wireless sensor networks

    Get PDF
    Source location privacy (SLP) is becoming an important property for a large class of security-critical wireless sensor network applications such as monitoring and tracking. Many routing protocols have been proposed that provide SLP, all of which provide a trade-off between SLP and energy. Experiments have been conducted to gauge the performance of the proposed protocols under different network parameters such as noise levels. As that there exists a plethora of protocols which contain a set of possibly conflicting performance attributes, it is difficult to select the SLP protocol that will provide the best trade-offs across them for a given application with specific requirements. In this paper, we propose a methodology where SLP protocols are first profiled to capture their performance under various protocol configurations. Then, we present a novel decision theoretic procedure for selecting the most appropriate SLP routing algorithm for the application and network under investigation. We show the viability of our approach through different case studies

    Near optimal routing protocols for source location privacy in wireless sensor networks: modelling, design and evaluation

    Get PDF
    Wireless Sensor Networks (WSNs) are collections of small computing devices that are used to monitor valuable assets such as endangered animals. As WSNs communicate wirelessly they leak information to malicious eavesdroppers. When monitoring assets it is important to provide Source Location Privacy (SLP), where the location of the message source must be kept hidden. Many SLP protocols have been developed by designing a protocol using intuition before evaluating its performance. However, this does not provide insight into how to develop optimal approaches. This thesis will present an alternate approach where the SLP problem is modelled using different techniques to give an optimal output. However, as this optimal output is typically for a restricted scenario, algorithms that trade optimality for generality are subsequently designed. Four main contributions are presented. First, an analysis is performed based on entropy and divergence to gain insight into how to reduce the information an attacker gains via the use of competing paths, and ways to compare the information loss of arbitrary routing protocols. Secondly, the SLP problem is modelled using Integer Linear Programming. The model result guides the design of a generic protocol called ILPRouting that groups messages together to reduce the moves an attacker makes. Thirdly, a timing analysis of when events occur is used to dynamically determine fake source parameters for the Dynamic and DynamicSPR algorithms. These fake sources lure the attacker to their location instead of the real source. Finally, the first SLP-aware duty cycle is investigated, and implemented for DynamicSPR to make it more energy efficient. These techniques are evaluated through simulations and deployments on WSN testbeds to demonstrate their effectiveness

    Quantifying source location privacy routing performance via divergence and information loss

    Get PDF

    Trust assessment in 32 KiB of RAM : multi-application trust-based task offloading for resource-constrained IoT nodes

    Get PDF
    There is an increasing demand for Internet of Things (IoT) systems comprised of resource-constrained sensor and actuator nodes executing increasingly complex applications, possibly simultaneously. IoT devices will not be able to execute computationally expensive tasks and will require more powerful computing nodes, called edge nodes, for such execution, in a process called computation offloading. When multiple powerful nodes are available, a selection problem arises: which edge node should a task be submitted to? This problem is even more acute when the system is subjected to attacks, such as DoS, or network perturbations such as system overload. In this paper, we present a trust model-based system architecture for computation offloading, based on behavioural evidence. The system architecture provides confidentiality, authentication and non-repudiation of messages in required scenarios and will operate within the resource constraints of embedded IoT nodes. We demonstrate the viability of the architecture with an example deployment of Beta Reputation System trust model on real hardware

    Organising a multidisciplinary postgraduate colloquium

    Get PDF
    The Warwick Postgraduate Colloquium in Computer Science (WPCCS) is an annual event for research students in the Department of Computer Science at the University of Warwick. The aims of the colloquium are to provide: (i) an experience of a conference setting for students, (ii) a place to practise presentation skills, (iii) a place to receive feedback and suggestions on their research, and (iv) an opportunity to learn about research being performed by other attendees. WPCCS has been held annually since 2003, but since 2016 many changes have been made to the event; in particular the introduction of networking aids (such as conference guides and lanyards), a new venue, the introduction of guest speakers and various efforts to encourage attendance. Meanwhile the number of submissions has increased, placing strain on the colloquium’s schedule and budget. In this paper the organising committees from 2016, 2017, and 2018 reflect critically on the experience WPCCS delivers to the attendees. We present an examination of what worked well, what did not work, and what we would like to try in the future, with the aim that these experiences are useful to the organisers of similar events

    Wildlife-friendly farming benefits rare birds, bees and plants

    Get PDF
    Agricultural intensification is a leading cause of global biodiversity loss, especially for threatened and near-threatened species. One widely implemented response is ‘wildlife-friendly farming’, involving the close integration of conservation and extensive farming practices within agricultural landscapes. However, the putative benefits from this controversial policy are currently either unknown or thought unlikely to extend to rare and declining species. Here, we show that new, evidence-based approaches to habitat creation on intensively managed farmland in England can achieve large increases in plant, bee and bird species. In particular, we found that habitat enhancement methods designed to provide the requirements of sensitive target biota consistently increased the richness and abundance of both rare and common species, with 10-fold to greater than 100-fold more rare species per sample area than generalized conventional conservation measures. Furthermore, targeting landscapes of high species richness amplified beneficial effects on the least mobile taxa: plants and bees. Our results provide the first unequivocal support for a national wildlife-friendly farming policy and suggest that this approach should be implemented much more extensively to address global biodiversity loss. However, to be effective, these conservation measures must be evidence-based, and developed using sound knowledge of the ecological requirements of key species
    • …
    corecore